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Two-dimensional electromagnetic crystals formed by reactively loaded wires

P. A. Belov,* C. R. Simovski,† and S. A. Tretyakov‡

Radio Laboratory, Helsinki University of Technology, P.O. Box 3000, FIN-02015 HUT, Finland
~Received 31 May 2002; published 20 September 2002!

Two-dimensional electromagnetic crystals formed by rectangular lattices of thin ideally conducting cylinders
periodically loaded by bulk reactive impedances are considered. An analytical theory of dispersion and reflec-
tion from this medium is presented. The consideration is based on the local field approach. The transcendental
dispersion equation is obtained in the closed form and solved numerically. Different types of the loads such as
inductive, capacitive, serial, and parallelLC circuits are considered. Typical dispersion curves and reflection
coefficients are calculated and analyzed.
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I. INTRODUCTION

Various artificial materials for applications in the micr
wave regime have been known for a long time. In rec
years, many new exciting applications were suggested
photonic band gap structures whose another namestop band
structures~SBS! appears to be more appropriate in the m
crowave regime. SBS can be used, for example, as m
elements of microwave filters and antenna reflectors. In
present paper we study a different kind of SBS which all
enhanced opportunities for design and tuning~including
electrical control! of these devices and for minimization o
their sizes compared to the wavelength in free spacel. The
SBS under study are modifications of the well known art
cial wire media~lattices of straight conducting wires!. The
properties of these stop band materials can be tailored
periodical loading the wires by small impedance circuits,
suggested in Ref.@1#. An application of arrays of capaci
tively loaded wires in the design of antenna reflectors w
suggested in Ref.@2#. Load impedances can be electrically
optically controlled, thus allowing electrical control of th
SBS properties. A similar idea of loading wires by loo
~inductive loads! was published in Ref.@3#, with the goal to
reduce the effective plasma frequency of the medium.

Wire media are known in the microwave engineering fo
long time as an artificial dielectric@4# with negative effective
permittivity at low frequencies. In the literature, wire med
have recently received increasing attention because of
applications, for example as antenna reflectors@5–8#, con-
trollable SBS@1#, and components of artificial double neg
tive materials~materials whose permittivity and permeabili
have negative real parts! @9–13#. In view of the current dis-
cussion on possible flaws in the interpretation of the exp
mental demonstration of negative refraction@14,15# and the
problem of perfect lens@16#, better understanding of wire
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media as one of the components of double negative mate
is very important. Wire media can be used also in the s
thesis of artificial impedance surfaces@17#. One of the most
attractive features of the artificial materials under consid
ation is a possibility to design materials with desired prop
ties.

Periodical structures with stop bands are usually analy
numerically. This concerns also two-dimensional arrays
perfectly conducting cylinders. For a brief overview of th
field we refer to Ref.@18#. However, no accurate analytica
model which would enable to predict the medium propert
for a wide range of geometrical parameters and opera
frequencies is known. The particular system of loaded wi
was analyzed before numerically@1,3#, and only a very sim-
plified analytical model for inductive loadings is known fro
Ref. @3#. A simple method for calculating explicitly the ban
structure of wire media was presented in Ref.@18#. That
rather accurate approach based on the local field appro
can be generalized to the case of periodically loaded wi
The distance between loads in each wire is assumed to
small compared to the wavelength in free space, so that
loading leads to some importantfrequencydispersion prop-
erties of wire media modified in this way. Here we are n
interested in the effects of spatial periodicity of loads. In R
@19# the structure with periodically interrupted wires~where
the splits form a lattice tilted with respect to the plane o
thogonal to the wire axes! has been studied. In that work th
spatial dispersion effects were considered and the dista
between splits was assumed to be comparable tol.

Note that the approach suggested in Ref.@18# is analogous
to that presented in Ref.@20# for regular lattices of point
scatterers. The theory@18# offers not only a method to ana
lyze the dispersion properties of wire media, but also a te
nique to synthesize media with desired dispersion proper
For example, we can reactively load the wires and the sa
basic approach will still work. In this paper we generalize t
theory of Ref.@18# for the case of two-dimensional electro
magnetic crystals formed by reactively loaded wires and
vestigate the dispersion characteristics of such media
gether with their reflection properties. The behavior of t
dispersion curves and the reflection coefficients from a h
space dramatically depends on the value of the load imp
ance. Finally, we note that this method allows to evaluate
induced currents in loaded~or unloaded! wires and, in prin-
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ciple, it allows to calculate the amplitudes of the eigenwav
too. However, at this stage we restrict the study to dispers
and reflection properties only.

II. FORMULATION OF THE PROBLEM

Let us consider rectangular grids of infinite loaded wir
as drawn in Fig. 1. The elementary cell has dimensiona
3b. The radius of wires isr 0!a,b, and they are periodically
loaded by impedancesZl(v) ~ohm! with the period c
!a,b,l. In this situation the loading can be interpreted a
uniformly distributed impedanceZ(v)5Zl(v)/c ~ohm/m!
per unit length of the wire.

We choose a coordinate system so thatOZ axis is the axis
of the reference wire, andOX and OY axes are parallel to
vectorsa and b, respectively. In this coordinate system t
radius vectors of distances from the reference wire to
wire with numbersm,n can be written asRm,n5ma1nb.
We assume that the wires are thin, so that their transve
polarization is negligible. Thus, the electric field produced
a single polarized wire outside of the wire volume is equa
the electric field of a current line centered at the wire axis.
study the eigenwaves of an infinite periodic structure we
sume the coordinate dependence of the current complex
plitudes in the form

I m,n5Ie2 j (qxam1qybn1qzz), ~1!

whereI is the current of the reference wire. The time depe
dence is harmonic, in the formej vt. The longitudinal com-
ponent of the electric field produced by any wire reads~e.g.,
Ref. @21#!

E~r ,z!52
h~k22qz

2!

4k
H0

(2)~Ak22qz
2r !Ie2 jqzz, ~2!

where h is the free-space wave impedance, distancer is
measured from the wire axis, andk is the free-space wav
number.

The effective susceptibility of an ideally conducting co
tinuous wire excited by a local electric field which depen

FIG. 1. Inner structure of loaded wire media.
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on the coordinate along the wire likeEloce2 jqzz can be found
from the boundary condition on the wire surface,

a0
215

Ez
loc

I
5

h~k22qz
2!

4k
H0

(2)~Ak22qz
2r 0!

'
h~k22qz

2!

4k
S 12 j

2

p H ln
Ak22qz

2r 0

2
1gJ D , ~3!

whereg'0.5772 is the Euler constant. Thus, we can co
sider continuous wires as lines of current with known s
ceptibility ~3!.

If we include lumped reactive loadsZl ~ohm! with the
periodc!l into the wires, they effectively form a uniformly
distributed impedanceZ5Zl /c ~ohm/m! per unit length of
the wire. It changes the wire susceptibility to

a215a0
211

k22qz
2

k2
Z~v!. ~4!

Here the coefficient (k22qz
2)/k2 takes into account the in

fluence of the local field phase shift along the wire.

III. THEORY

A. Dispersion equation

The dispersion characteristics of the media under con
eration can be found as solutions of the corresponding eig
value problem. Here we briefly reproduce the derivati
made in Ref.@18# for ideally conducting wires and in Ref
@20# for three-dimensional lattice of point scatterers. Assu
ing that an eigenwave has the spatial depende
e2 j (qxx1qyy1qzz), we write the expression for the local ele
tric field acting on the reference wire,

a21I 5Ez
loc52

h~k22qz
2!

4k

3 (
(m,n)Þ(0,0)

@H0
(2)~Ak22qz

2Rm,n!e2 j (qxam1qybn)#I .

~5!

It was shown in Ref.@18# that applying the Poisson summa
tion formula with singularity cancellation Eq.@22# one can
rewrite Eq.~5! in the form

1

p
ln

b

2pr 0
1

2

j hk
Z~v!1

1

bkx
(0)

sinkx
(0)a

coskx
(0)a2cosqxa

1 (
nÞ0

S 1

bkx
(n)

sinkx
(n)a

coskx
(n)a2cosqxa

2
1

2punu D 50.

~6!

Herekx
(n) denotes thex component of the wave vector ofnth

Floquet mode,
0-2
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kx
(n)52 jAS qy1

2pn

b D 2

1qz
22k2, Re$A~ !%.0. ~7!

Formula~6! is a real-valued dispersion equation, whose
lutions give dependencies of the eigenwave propagation
stantsqx ,qy ,qz versus the frequencyv.

B. Reflection coefficient

Now it becomes possible to study the reflection proper
of a half space filled by the lattice of loaded wires. In ord
to solve the reflection problem we solve the dispersion eq
tion numerically and find all modes that can exist in t
structure. Following Refs.@18,20#, we can then determine
the relative amplitudes of excited modes and calculate
reflection coefficient from the half space. It is very importa
here to take into account not only the propagating modes
also evanescent ones, which do not change the abs
value of the reflection coefficient but influence its pha
This theory gives the solution of the reflection problem in
simple and physically clear form in terms of the propagat
factors of the eigenmodes inside the lattice.

Consider a plane interface between a half space filled w
a wire medium (x.0, or indexm>0) and free space an
suppose that an incident plane electromagnetic w
Ee2 j (kxx1kyy1kzz) illuminates this interface. To solve for th
reflection, it is convenient to split the incident electric fie
vector into the longitudinal and transverse parts with resp
to the wire axis. Obviously, under our assumption of th
wires, the wave whose electric field is orthogonal to t
wires does not see the grid. The reflection coefficient for
longitudinal part is@20#

R52e2 jkxa)
n51

1`

ejkxa
sin@~qx

(n)2kx!a/2#

sin@~qx
(n)1kx!a/2#

, ~8!

whereqx
(n) are the solutions of dispersion equation~6! with

qy5ky , qz5kz .
The product in Eq.~8! includes all the modes propagatin

into the half space filled by the lattice. It means that o
should take the correct sign ofqx

(n) ~corresponding to the
direction of the Poynting vector of the mode from the sou
into the half space!.

C. Dense grids

In the low-frequency regime the lattice of loaded wir
does not possess magnetic properties, so it is possibl
introduce the effective frequency dependent permittivity
the material. For dense lattices~periods are much smalle
than the wavelength! the dispersion equation~6! can be sim-
plified using the Taylor expansion of sine and cosine fu
tions for small argument and analytically solved. The res
is the following:

q25qx
21qy

21qz
25k22k0

2 , ~9!
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k0
25

2p/s2

ln
s

2pr 0
1

2p

j hk
Z~v!1F~r !

, ~10!

wheres5Aab, r 5a/b,

F~r !52
1

2
lnr 1 (

n51

1` S coth~pnr !21

n D1
pr

6
. ~11!

The assumptions used in the derivation of formula~9! are
qx,p/a, qy,p/b, qz,p/c. Note, that it is not equivalen
to the low-frequency restriction only, because one can ob
rather high propagation constants in the regions of the
pedance resonances.

For square grids (a5b) expression~10! simplifies and we
have

k0
25

2p/a2

ln
a

2pr 0
1

2p

j hk
Z~v!10.5275

. ~12!

For waves traveling in the direction orthogonal to the w
axis (qz50), the dispersion equation~9! can be reformu-
lated in terms of frequency dependent effective permittiv

«~v!5«0S 12
k0

2~v!

«0m0v2D , ~13!

which is the well-known plasmonic form@4#.

IV. CONVENTIONAL AND INDUCTIVELY LOADED
WIRE MEDIA

As a reference for comparisons with arrays of load
wires we first calculate dispersion curves for a square grid
ideally conducting cylinders with the filling ratiof
5pr 0

2/a250.001. The result is shown in Fig. 2, whereG
5(0,0,0)T, X5(p/a,0,0)T, and M5(p/a,p/a,0)T are

FIG. 2. Dispersion curves for square grid of unloaded cylind
with filling ratio f 50.001 ~thick lines! and dispersion curves fo
free space~thin lines!.
0-3
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points in the first Brillouin zone. Here together with the thi
lines representing the dispersion curves for the descr
wire media the dispersion curves for free space as thin l
are presented to show the difference. This dispersion
coincides with the plots from Refs.@23# and @24# for the
same system.

We have calculated the reflection coefficient~normal in-
cidence, electric field polarized along the wires! from a half
space filled by a square lattice of cylinders with filling rat
f 50.001 ~the same whose dispersion curves are shown
Fig. 2! in the single-mode regime (ka,2p). In Fig. 3 this
result is shown as a function of the normalized frequen
ka/(2p) together with the corresponding propagation co
stants. The propagation constants have two types: propa
ing Im(q)50 and decaying Im(q),0. The decaying mode
can be further classified into two types: exponentially dec
ing @Re(q)50# and exponentially decaying with alternatin
directions of the currents in wires@Re(q)5p/a#. The last
type of decaying modes appears only near spatial resona
In Fig. 3 at the upper part only the real parts of the propa
tion constants for propagating modes are plotted~imaginary
parts are zeros!, at the central part only the imaginary par
of the propagation constants for decaying modes are plo
@real parts are zeros in all the cases except curves ma
with Re(q)5p/a]. In the plots for Re(qa/p) and Im(qa/p)
thin lines show the modes for zero susceptibility of wir
~free space considered as a latticea3b but without any in-
clusions!.

Note that near the upper edge of the low-frequency s
band the interface between free space and the wire med
operates as a magnetic wall. It can be very useful in ante
applications, because a wire antenna placed over a mag
screen does not suffer destructive influence of its image,
instead of it experiences double amplification of the radia
field. The position of the upper edge of the stop band
sensitive to the wire radius, but the physical restrictions
the wire radius do not allow to obtain this edge at compa
tively low frequencies~which is usually the case interestin

FIG. 3. Reflection coefficient~at normal incidence and for po
larization along wires! from a half space filled by a square grid o
unloaded cylinders with the filling ratiof 50.001 and the corre-
sponding propagation constants vs normalized frequency.
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for antenna applications!. Inductive loads connected in serie
with the wire sections allow to make the low-frequency ba
gap narrower@3# ~Fig. 4!.

In the cases of ideally conducting unloaded wires w
Z(v)50 and inductively loaded wires withZ(v)5 j vL the
parameterk0 ~10! becomes frequency independent and
stop band at low frequencies has the upper edge at the
quency corresponding tok0: for k,k0 q52 jAk0

22k2, and
for k.k0 q5Ak22k0

2. This is the well-known classical re
sult @4,25#, which shows that«eff,0 for k,k0 and 0,«eff
,1 for k.k0. In other words, in the low-frequency regim
for qz50 the medium behaves as an artificial plasma wit
plasmonlike permittivity~negative at the frequencies lowe
than the plasmon resonance frequency!,

«~v!5«0S 12
vp

2

v2D , ~14!

where

vp
25

2p«0m0 /s2

ln
s

2pr 0
1

2pL

m0
1F~r !

. ~15!

Inductive loads reduce the plasmon frequency of
structure@3#, which can be interpreted as an effective redu
tion of the wire radius. Such reduction is very effective, b
cause the plasmon resonance frequency is inversely pro
tional to the inductance~in contrast to a logarithmic
dependance on the wire radius whose reduction is also
stricted by the skin effect!. Thus, one can move the uppe
edge of the low-frequency stop band to any desired
quency by tuning inductive loads and obtain a magnetic w
at an interface between such a medium and free space
ductive loads can also be used to create high-quality rej
ing filters of lower frequencies with a controlled frequen
band. Numerical estimations show that it is realistic to obt

FIG. 4. Dispersion plot for a square grid of cylinders with th
filling ratio f 50.001 loaded by inductive impedanceL520pm0 per
unit length.
0-4
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an artificial magnetic wall at such low frequencies that
array periodsa andb are of the order ofl/1000.

V. CAPACITIVE AND SERIES LC-CIRCUIT LOADINGS

Next, let us consider arrays of wires loaded by capa
tances. This means that the wire is periodically cut~the pe-
riod is much smaller than the wavelength! and a bulk capaci-
tance inserted in every gap. Every wire can be seen as m
up of series connections of these load capacitances an
ductances formed by wire sections between the loads.
effective medium behavior dramatically depends on the re
nant frequency of these sections. If the load capacita
tends to infinity~which corresponds to unloaded cylinder
because the impedance of the loads tends to zero! we obtain
the classical dispersion curves~Fig. 2, @23,24#! with a wide
stop band@4,25# at low frequencies. In the case when t
capacitance is infinitely small~which corresponds to inter
rupted wires! the medium behaves as a three-dimensio
lattice of dipole scatterers~see Fig. 5!.

The dispersion plot, reflection coefficient from a ha
space filled and the corresponding propagation constant
a square grid of cylinders with the filling ratiof 50.001
loaded by capacitive impedances with a larger value of
capacitance (C52p«0 per unit length! are presented in Figs
6 and 7. In general, the topology of the propagation cons
plot looks similar to the unloaded case except the appear
of the mentioned low-frequency pass band and exponent
decaying modes with alternating current directions Req)
5p/a existing at frequencies higher than the upper edge
that pass band~Fig. 7!. The reflection coefficient from a hal
space at frequencies within the first stop band is mainly
termined by the evanescent modes with the smallest de
factors, and in this particular case we observe that inside
first stop band near the lower band edge the mode w
Re(q)5p/a has a smaller decay factor, but at higher fr
quencies up to the upper band edge the mode with Req)
50 determines the reflection properties. Similar effects
side stop bands produced by resonances of inclusions

FIG. 5. Dispersion plot for a square grid of cylinders with t
filling ratio f 50.001 loaded by capacitive impedanceC
50.05p«0 per unit length.
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observed in three-dimensional lattices of resonant fer
spheres@26#.

If the self-resonance frequency of the loaded wires
higher than the frequency of the first lattice spatial resona
~practically meaning that the load capacitance is small!, the
low-frequency band gap completely disappears, and the
branch of the dispersion curves takes the same form as f
three-dimensional lattice of point scatterers~Fig. 5!.

SeriesLC-circuit loads operate in the same manner as
capacitive loads in the wire media with the wire radius
fectively reduced by inductive loading, see the discussion
inductive loads above.

In the quasistatic regime for fields independent ofz, i.e.,
qz50, in case of capacitiveZ(v)51/( j vC) and seriesLC
circuit Z(v)51/( j vC)1 j vL loads we have a resonant e
fective permittivity in the form

«~v!5«0S 11
C/~«0s2!

12v2/v0
2D , ~16!

FIG. 6. Dispersion plot for a square grid of cylinders with th
filling ratio f 50.001 loaded by capacitive impedances withC
52p«0 per unit length.

FIG. 7. Reflection coefficient~at normal incidence and for po
larization along the wires! from a half space filled by the same gri
as in Fig. 6 and the corresponding propagation constants vs
normalized frequency.
0-5
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where

v0
25

2p/~m0C!

ln
s

2pr 0
1

2pL

m0
1F~r !

. ~17!

At frequencies lower than the circuit resonance the m
dium operates as an artificial dielectric, and at higher f
quencies the medium becomes an artificial plasma. We
conclude that tunable capacitive loads can be used to cr
rejecting filters with a controllable frequency band.

VI. PARALLEL RESONANT LC-CIRCUIT LOADING

Combinations of inductive and capacitive loads connec
in parallel give us an ability to control the medium dispe
sion in general. If the lumped loads are parallelLC circuits,
the main resulting effect is seen in the appearance of a tr
parency band near the resonance frequency of the circuit
a stop band at higher frequencies~Figs. 8 and 9!.

The pass band is formed around the series resonance
quency, where the wires are weakly excited due to a h
total impedance of wires per unit length. At high frequenc
the impedance of the loads is very small, so they do
influence the array properties. It is interesting that inside
new pass band of the medium the reflection coefficient fr
a half space varies from plus one~the lower end! to minus
one ~the upper end!, passing through zero in the cente
where the medium becomes transparent. This can have
tential applications because with a small change of the l
parameters the desired reflection properties can be achi
at a given frequency.

One can position the self-resonance of the load circui
any required frequency and design electromagnetic crys
with desired band structure. Furthermore, the band gap s
ture in this case is modified only near the load resonance.
from that frequency the waves are naturally not affected
the loads. Thus, for example, one can tune the structur

FIG. 8. Dispersion plot for a square grid of cylinders with t
filling ratio f 50.001 loaded by a parallel resonant circuit withL
52pm0 inductance tuned to the resonant frequencykres50.4p/a.
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that there is a very narrow pass band inside the wide lo
frequency stop band. Also, as mentioned above, we can h
a narrow stop band inside a wide pass band of the struc
increasing the resonance frequency of the loads. In the
of parallelLC-circuit loadsZ(v)5 j vL/(12v2LC) the ef-
fective permittivity ~again, introduced forqz50) tends to
infinity and also passes through unity at nearly position
frequencies,

«~v!5«0S 12
2p/~«0m0v2s2!

ln
s

2pr 0
1

2pL/m0

12v2LC
1F~r !D . ~18!

At the circuit resonant frequency the value of the load b
comes infinite, and the medium becomes transparent wi«
5«0. At higher frequencies the load behaves as a cap
tance, and there is also a resonance of the medium, wher
permittivity tends to infinity.

VII. CONCLUSION

We have developed an analytical theory of dispersion
reflection for the electromagnetic crystals formed by rect
gular lattices of parallel infinite loaded wires. Dispersio
curves and reflection coefficients for some typical cases h
been presented. The quasistatic limit has been studied, w
has resulted in a simple analytical formula for the frequen
dependent permittivity of the medium.

Opportunities offered by periodical loading of the wire
~in the control of frequency and reflection phase! are dis-
cussed. We have analyzed in details the properties of r
tively loaded wire media. We have found that capaciti
loading makes the crystal an ordinary artificial dielectric
low frequencies without any changes of the properties
high frequencies. Inductive loading is equivalent to an eff
tive reduction of the wire radius and makes the lo

FIG. 9. Reflection coefficient~at normal incidence and for po
larization along wires! from a half space filled by the same mediu
as in Fig. 8 and the corresponding propagation constants vs nor
ized frequency.
0-6
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frequency stop band narrower, but on the other hand it h
to position the upper edge of the first stop band~where the
interface has very interesting reflection properties! to lower
frequencies. ResonantLC-circuit loading allows one to de
sign very interesting crystals with reflection properties wh
el
nd

ltz

C

lin

C

lin

ltz

03661
psare rather sensitive to the position of the circuit resonan
All the described electrically controlled crystals can be s
cessfully used in the microwave regime, for example, as
ements of polarization sensitive microwave filters, anten
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